The current process for producing PET tracers relies on expensive infrastructure, equipment, and specially-trained personnel, resulting in a high overall production cost. A few companies have managed to reduce the cost of [F-18]FDG and [F-18]NaF by producing large batches of tracers and then dividing and distributing them to many patients in their local area. However, this model is not scalable to large numbers of different tracers and thus other tracers remain expensive and unavailable to most patients and researchers.
To address this challenge, a fundamental reduction in PET tracer production cost is needed. One of the most effective ways to reduce cost is through the development of new technologies. Several groups have been developing microfluidic platforms for PET tracer synthesis. The technologies can be broadly classified as "flow-through" and "batch".
Microfluidic technologies offer a number of advantages including:
Our group has focused on "batch" format devices due to intrinsic advantages of using small volumes, including reduced production cost and improved specific activity. In a collaboration with Prof. C.J. Kim’s lab at UCLA, we successfully demonstrated successful radiosynthesis using a digital microfluidic device based on electrowetting-on-dielctric (EWOD) (see Figure 1). Control of droplets in these microchips is entirely electronic, which could improve reliability by eliminating the need for moving parts, and could improve miniaturization by eliminating the need for bulky valve actuators within the radiation shielding. These EWOD microchips are constructed from chemically-inert and thermally-stable materials, offering wide flexibility in terms of reagents and reaction conditions, and thus enabling a diverse array of PET tracers to be synthesized.
Figure 1: Diagram of the EWOD radiochemistry chip.
Microscale synthesis with high and reliable yield has been developed for [F-18]FDG, [F-18]FLT, [F-18]Fallypride, [F-18]FNB, and [F-18]SFB. Several batches have been subjected to clinical quality-control testing and passed all required tests.
Through optimization studies, general procedures and rules of thumb for translating known macroscale protocols to the microscale have been developed.
To enable safe operation of the chip, we have developed, in collaboration with Sofie Biosciences, Inc., two approaches for loading accurate volumes of reagents from sealed reagent sources to the chip. In one approach, reagents are dispensed via a syringe pump (see Figure 2). On-chip liquid detection using electrical impedance helps achieve high accuracy by providing feedback to compensate for any evaporation that has occurred from the dispensing needle. In a second approach, the delivery system is made from low-cost disposable components to eliminate the risk of cross-contamination and the need for cleaning.
In addition, in collaboration with CJ Kim's lab, we have developed some preliminary approaches for on-chip purification.
Figure 2: Automated dispensing of reagents to EWOD chip using a syringe pump. (A) Schematic of the fluid pathway and control system, including a photograph of the needle fixture and EWOD chip showing recently dispensed droplets. (B) Procedure for on-demand reagent delivery. After dispensing one droplet (step 1), undesired evaporation may occur at the tip of the dispensing needle (step 2). When the next droplet is needed, the control system advances the syringe pump until the liquid is detected electronically (step 3), and then dispenses the desired volume (step 4).
The current focuses are on automation and the development of a prototype system (collaboration with Sofie Biosciences, Inc.), optimization of additional tracers, exploiting the small volume to produce high specific-activity tracers, and development of more robust chip fabrication (collaboration with Sofie Biosciences, Inc.).